
Help
Things go wrong all the time. Don't worry, this happens to everyone. So keep calm. When you encounter an error, just google the error message. For
best results, add the keywords "rails" or "ruby". Results from are often really helpful. Look for those! The most experienced
developers do this frequently ;-).

Here are common mistakes with a little checklist:

Have you run rake db:migrate to apply the newest database migrations?
Have you really saved the file you just changed? Unsaved files are often marked in the editor via an asterisk or a point next to their name.
If you just added a gem to the Gemfile, have you run bundle install to install it?
If you just installed a gem, have you restarted the server?

/
stackoverflow.com

Editor tips
When you write code you will be using a text editor. Of course each text editor is different and configurable. Here are just some functions and their most
general short cuts. All of them work in . Your editor may differ!

The shortcuts listed here are for Linux/Windows. On a Mac you will have to replace Ctrl with Cmd.

Function Shortcut Description

Save file Ctrl + S Saves the currently open file. If it was a new file you may also be asked where to save it.

Undo Ctrl + Z Undo the last change you made to the current file. Can be applied multiple times in succession to undo multiple
changes.

Redo Ctrl + Y

or Ctrl +
Shift + Z

Redo what you just undid with undo, can also be done multiple times.

Find in File Ctrl + F Search for a character sequence within the currently open file. Hit Enter to progress to the next match.

Find in all
Files

Ctrl +
Shift + F

Search for a character sequence in all files of the project.

Replace Ctrl + H

or Ctrl + R

Replace occurrences of the supplied character sequence with the other supplied character sequence. Useful when
renaming something.

Copy Ctrl + C Copy the currently highlighted text into the clipboard.

Cut Ctrl + X Copy the highlighted text into the clipboard but delete it.

Paste Ctrl + V Insert whatever currently is in the clipboard (through Copy or Cut) at the current caret position. Can insert multiple times.

New File Ctrl + N Create a new empty file.

Search and
open file

Ctrl + P Search for a file giving part of its name (fuzzy search). Pressing enter will open the selected file.

Comment Ctrl + / Marks the selected text as a comment, which means that it will be ignored. Useful when you want to see how something
behaves or looks without a specific section of code being run.

/
Sublime Text 2

Rails Basics
This is an introduction to the basics of Rails. We look at the general structure of a Rails application and the important commands used in the terminal.

/

The Structure of a Rails app
Here is an overview of all the folders of a new Rails application, outlining the purpose of each folder, and describing the most important files.

Name Description

app This folder contains your application. Therefore it is the most important folder in Ruby on Rails and it is worth digging into its
subfolders. See the following rows.

app/assets Assets basically are your front-end stuff. This folder contains images you use on your website, javascripts for all your fancy front-
end interaction and stylesheets for all your CSS making your website absolutely beautiful.

app/controllers The controllers subdirectory contains the controllers, which handle the requests from the users. It is often responsible for a single
resource type, such as places, users or attendees. Controllers also tie together the models and the views.

app/helpers Helpers are used to take care of logic that is needed in the views in order to keep the views clean of logic and reuse that logic in
multiple views.

app/mailers Functionality to send emails goes here.

app/models The models subdirectory holds the classes that model the business logic of our application. It is concerned with the things our
application is about. Often this is data, that is also saved in the database. Examples here are a Person, or a Place class with all
their typical behaviour.

app/views The views subdirectory contains the display templates that will be displayed to the user after a successful request. By default they
are written in HTML with embedded ruby (.html.erb). The embedded ruby is used to insert data from the application. It is then
converted to HTML and sent to the browser of the user. It has subdirectories for every resource of our application, e.g. places,
persons. These subdirectories contain the associated view files.

Files starting with an underscore (_) are called partials. Those are parts of a view which are reused in other views. A common
example is _form.html.erb which contains the basic form for a given resource. It is used in the new and in the edit view since
creating something and editing something looks pretty similar.

config This directory contains the configuration files that your application will need, including your database configuration (in database.yml)
and the particularly important routes.rb which decides how web requests are handled. The routes.rb file matches a given URL with
the controller which will handle the request.

db Contains a lot of database related files. Most importantly the migrations subdirectory, containing all your database migration files.
Migrations set up your database structure, including the attributes of your models. With migrations you can add new attributes to
existing models or create new models. So you could add the favorite_color attribute to your Person model so everyone can specify
their favorite color.

doc Contains the documentation you create for your application. Not too important when starting out.

lib Short for library. Contains code you've developed that is used in your application and may be used elsewhere. For example, this
might be code used to get specific information from Facebook.

log See all the funny stuff that is written in the console where you started the Rails server? It is written to your development.log. Logs
contain runtime information of your application. If an error happens, it will be recorded here.

public Contains static files that do not contain Ruby code, such as error pages.

script By default contains what is executed when you type in the rails command. Seldom of importance to beginners.

test Contains the tests for your application. With tests you make sure that your application actually does what you think it does. This
directory might also be called spec, if you are using the RSpec gem (an alternative testing framework).

vendor A folder for software code provided by others ("libraries"). Most often, libraries are provided as ruby gems and installed using the
Gemfile. If code is not available as a ruby gem then you should put it here. This might be the case for jQuery plugins. Probably won't
be used that often in the beginning.

Gemfile A file that specifies a list of gems that are required to run your application. Rails itself is a gem you will find listed in the Gemfile.
Ruby gems are self-contained packages of code, more generally called libraries, that add functionality or features to your
application.

If you want to add a new gem to your application, add "gem gem_name" to your Gemfile, optionally specifying a version number.
Save the file and then run bundle install to install the gem.

Gemfile.lock This file specifies the exact versions of all gems you use. Because some gems depend on other gems, Ruby will install all you need
automatically. The file also contains specific version numbers. It can be used to make sure that everyone within a team is working
with the same versions of gems. The file is auto-generated. Do not edit this file.

//

Important Rails commands
Here is a summary of important commands that can be used as you develop your Ruby on Rails app. You must be in the root directory of your project
to run any of these commands (with the exception of the rails new command). The project or application root directory is the folder containing all the
subfolders described above (app, config, etc.).

Concept Usage Description

Create a new
app

Create a new Ruby on Rails application with the given name here. This will
give you the basic structure to immediately get started. After this command
has successfully run your application is in a folder with the same name you
gave the application. You have to cd into that folder.

Start the
server

You have to start the server in order for your application to respond to your
requests. Starting the server might take some time. When it is done, you
can access your application under in the browser of your
choice.

In order to stop the server, go to the console where it is running and press
Ctrl + C

Scaffolding The scaffold command magically generates all the common things needed
for a new resource for you! This includes controllers, models and views. It
also creates the following basic actions: create a new resource, edit a
resource, show a resource, and delete a resource.

That's all the basics you need. Take this example:

Now you can create new products, edit them, view them and delete them if
you don't need them anymore. Nothing stops you from creating a full
fledged web shop now ;-)

Run
migrations

When you add a new migration, for example by creating a new scaffold,
the migration has to be applied to your database. The command is used to
update your database.

Install
dependencies

If you just added a new gem to your Gemfile you should run bundle install
to install it. Don't forget to restart your server afterwards!

Check
dependencies

Checks if the dependencies listed in Gemfile are satisfied by currently
installed gems

//

rails new name

rails server

localhost:3000

rails generate scaffold name attribute:type

rails generate scaffold product name:string price:integer

rake db:migrate

bundle install

bundle check

General concepts
Concept Usage Examples Description

Comment Ruby ignores everything that is marked as a comment. It does
not try to execute it. Comments are just there for you as
information. Comments are also commonly used to comment
out code. That is when you don't want some part of your code
to execute but you don't want to delete it just yet, because you
are trying different things out.

Variables With a variable you tell Ruby that from now on you want to refer
to that value by the name you gave it. So for the first example,
from now on when you use name Ruby will know that you
meant "Tobi".

Console
output

Prints its argument to the console. Can be used in Rails apps
to print something in the console where the server is running.

Call a
method

Calling a method is also often referred to as sending a
message in Ruby. Basically we are sending an object some
kind of message and are waiting for its response. This
message may have no arguments or multiple arguments,
depending on the message. So we kindly ask the object to do
something or give us some information. When you "call a
method" or "send a message" something happens. In the first
example we ask a String how long it is (how many characters it
consists of). In the last example we substitute all occurrences
of "ae" in the string with the German "ä".

Different kinds of objects (Strings, Numbers, Arrays...)
understand different messages.

Define a
method

Methods are basically reusable units of behaviour. And you can
define them yourself just like this. Methods are small and
focused on implementing a specific behaviour.

Our example method is focused on greeting people. You could
call it like this:

Equality With two equal signs you can check if two things are the same.
If so, will be returned; otherwise, the result will be

.

Inequality Inequality is the inverse to equality, e.g. it results in when
two values are not the same and it results in when they
are the same.

Decisions
with if

With if-clauses you can decide based upon a condition what to
do. When the condition is considered true, then the code after it
is executed. If it is considered false, the code after the "else" is
executed.

In the example, access is granted based upon the decision if a
given input matches the password.

Constants Constants look like variables, just in UPCASE. Both hold values
and give you a name to refer to those values. However while
the value a variable holds may change or might be of an
unknown value (if you save user input in a variable) constants
are different. They have a known value that should never
change. Think of it a bit like mathematical or physical
constants. These don't change, they always refer to the same
value.

//

Comment text # This text is a comment

some.ruby_code # A comment

some.ignored_ruby_code

variable = some_value name = "Tobi"
name # => "Tobi"

sum = 18 + 5
sum # => 23

puts something puts "Hello World"

puts [1, 5, "mooo"]

object.method(arguments) string.length

array.delete_at(2)

string.gsub("ae", "ä")

def name(parameter)
 # method body
end

def greet(name)
 puts "Hy there " + name
end

greet("Tobi")

object == other true == true # => true

3 == 4 # => false

"Hello" == "Hello" # => true

"Helo" == "Hello" # => false

true

false

object != other true != true # => false

3 != 4 # => true

true

false

if condition
 # happens when true

else
 # happens when false

end

if input == password
 grant_access

else
 deny_access

end

CONSTANT = some_value PI = 3.1415926535
PI # => 3.1415926535

ADULT_AGE = 18
ADULT_AGE # => 18

Numbers
Numbers are what you would expect them to be, normal numbers that you use to perform basic math operations.

More information about numbers can be found in the .

Concept Usage Examples Description

normal
Number

Numbers are natural for Ruby, you just have to enter them!

Decimals You can achieve decimal numbers in Ruby simply by adding a point.

Basic Math In Ruby you can easily use basic math operations. In that sense you may use
Ruby as a super-powered calculator.

Comparison Numbers may be compared to determine if a number is bigger or smaller than
another number. When you have the age of a person saved in the
variable you can see if that person is considered an adult in Germany:

//

ruby-doc of Numeric

number_of_your_choice 0

-11

42

main.decimal 3.2

-5.0

n operator m 2 + 3 # => 5

5 - 7 # => -2

8 * 7 # => 56

84 / 4 # => 21

n operator m 12 > 3 # => true

12 < 3 # => false

7 >= 7 # => true

age

age >= 18 # true or false

Strings
Strings are used to hold textual information. They may contain single characters, words, sentences or a whole book. However you may just think of
them as an ordered collection of characters.

You can find out more about Strings at the .

Concept Usage Examples Description

Create A string is created by putting quotation marks around
a character sequence. A
recommends using single quotes for simple strings.

Interpolation You can combine a string with a variable or Ruby
expression using double quotation marks. This is
called "interpolation." It is okay to use double
quotation marks around a simple string, too.

Length You can send a string a message, asking it how long
it is and it will respond with the number of characters
it consists of. You could use this to check if the
desired password of a user exceeds the required
minimum length. Notice how we add a comment to
show the expected result.

Concatenate Concatenates two or more strings together and
returns the result.

Substitute gsub stands for "globally substitute". It substitutes all
occurences of within the string with

.

Access Access the character at the given position in the
string. Be aware that the first position is actually
position 0.

//

ruby-doc page about Strings

'A string' 'Hello World'

'a'

'Just characters 129 _!$%^'

''

Ruby style guide

"A string and an #{expression}" "Email: #{user.email}"

"The total is #{2 + 2}"

"A simple string"

string.length "Hello".length # => 5

"".length # => 0

string + string2
"Hello " + "reader"
=> "Hello reader"

"a" + "b" + "c" # => "abc"

string.gsub(a_string,
substitute)

"Hae".gsub("ae", "ä")
=> "Hä"

"Hae".gsub("b", "ä")
=> "Hae"

"Greenie".gsub("e", "u")
=> "Gruuniu"

a_string

substitute

string[position] "Hello"[1] # => "e"

Arrays
An array is an ordered collection of items which is indexed by numbers. So an array contains multiple objects that are mostly related to each other. So
what could you do? You could store a collection of the names of your favorite fruits and name it fruits.

This is just a small selection of things an Array can do. For more information have a look at the .

Concept Usage Examples Description

Create Creates an Array, empty or with the specified contents.

Number
of
elements

Returns the number of elements in an Array.

Access As an Array is a collection of different elements, you
often want to access a single element of the Array.
Arrays are indexed by numbers so you can use a
number to access an individual element. Be aware that
the numbering actually starts with "0" so the first
element actually is the 0th. And the last element of a
three element array is element number 2.

Adding
an
element

Adds the element to the end of the array, increasing the
size of the array by one.

Assigning Assigning new Array Values works a lot like accessing
them; use an equals sign to set a new value. Voila! You
changed an element of the array! Weehuuuuu!

Delete at
index

Deletes the element of the array at the specified index.
Remember that indexing starts at 0. If you specify an
index larger than the number of elements in the array,
nothing will happen.

Iterating "Iterating" means doing something for each element of
the array. Code placed between do and end determines
what is done to each element in the array.

The first example prints the name of every person in
the array to the console. The second example simply
doubles every number of a given array.

//

ruby-doc for Array

[contents] []

["Rails", "fun", 5]

array.size [].size # => 0

[1, 2, 3].size # => 3

["foo", "bar"].size # => 2

array[position]
array = ["hi", "foo", "bar"]

array[0] # => "hi"
array[2] # => "bar"

array << element
array = [1, 2, 3]

array << 4
array # => [1, 2, 3, 4]

array[number] = value
array = ["hi", "foo", "bar"]

array[2] = "new"
array # => ["hi", "foo", "new"]

array.delete_at(i)
array = [0, 14, 55, 79]

array.delete_at(2)
array # => [0, 14, 79]

array.each do |e| .. end persons.each do |p| puts p.name end

numbers.each do |n| n = n * 2 end

Hashes
Hashes associate a key to some value. You may then retrieve the value based upon its key. This construct is called a dictionary in other languages,
which is appropriate because you use the key to "look up" a value, as you would look up a definition for a word in a dictionary. Each key must be unique
for a given hash but values can be repeated.

Hashes can map from anything to anything! You can map from Strings to Numbers, Strings to Strings, Numbers to Booleans... and you can mix all of
those! Although it is common that at least all the keys are of the same class. Symbols are especially common as keys. Symbols look like this:

. A symbol is a colon followed by some characters. You can think of them as special strings that stand for (symbolize) something! We often
use symbols because Ruby runs faster when we use symbols instead of strings.

Learn more about hashes at .

Concept Usage Examples Description

Creating You create a hash by surrounding the key-value pairs with curly
braces. The arrow always goes from the key to the value
depicting the meaning: "This key points to this value.". Key-
value pairs are then separated by commas.

Accessing Accessing an entry in a hash looks a lot like accessing it in an
array. However with a hash the key can be anything, not just
numbers. If you try to access a key that does not exist, the
value is returned, which is Ruby's way of saying
"nothing", because if it doesn't recognize the key it can't return
a value for it.

Assigning Assigning values to a hash is similar to assigning values to an
array. With a hash, the key can be a number or it can be a
symbol, string, number... or anything, really!

Deleting You can delete a specified key from the hash, so that the key
and its value can not be accessed.

//

:symbol

ruby-doc

{key => value} {:hobby => "programming"}

{42 => "answer", "score" => 100,
 :name => "Tobi"}

hash[key]
hash = {:key => "value"}

hash[:key] # => "value"
hash[foo] # => nil

nil

hash[key] = value
hash = {:a => "b"}

hash[:key] = "value"
hash # => {:a=>"b", :key=>"value"}

hash.delete(key)
hash = {:a => "b", :b => 10}

hash.delete(:a)
hash # => {:b=>10}

Ruby Basics
Ruby is the programming language Ruby on Rails is written in. So most of the time you will be writing Ruby code. Therefore it is good to grasp the
basics of Ruby. If you just want to play with Ruby, type irb into your console to start interactive ruby. There you can easily experiment with Ruby. To
leave irb, type exit.

This is just a very small selection of concepts. This is especially true later on when we talk about what Arrays, Strings etc. can do. For more complete
information have a look at or search with your favorite search engine!

/

ruby-doc

Console Basics
The console (also called command line, command prompt or terminal) is just another way of interacting with your computer. So you can basically do
anything with it that you could also do with your graphical desktop user interface. This sections contains a couple of examples.

For the different operating systems starting the console differs.

Windows: Open the start menu and search for command prompt. Alternatively choose execute and enter cmd.
Mac: Open Spotlight, type terminal, and start that program.
Linux: The terminal should be one of the main options once you open the main menu of your distribution. Otherwise search for terminal if your
distribution has such an option or look under Accessories.

Concept Usage Examples Description

Change
directory

Changes the directory to the specified directory on the console.

List
contents
directory

Shows all contents (files and folders) of the directory. If no directory
is specified shows the contents of the current directory.

Directory
you are
currently
in

Shows the full path of the directory you are currently in. E.g.
/home/tobi/railsgirls
A note on filenames: if a file or directory name starts with a slash /
as in the output of pwd above, it is an absolute filename specifying
the complete filename starting at the root of the current file system
(e.g. hard disk). If the slash (/) is ommitted, the file name is relative
to the current working directory.

Create a
new
directory

Creates a directory with the given name in the folder you are
currently in.

Delete a
file

Deletes the specified file. Be extra cautious with this as it would be
too bad to delete something you still need :-(

You can simply specify the name of a file of the directory you are
currently in. However you can also specify a path, this is shown in
the third example. There we delete the old_picture.jpg file from the
pictures folder.

Delete a
directory

Deletes the specified folder and all of its contents. So please be
super cautious with this! Make sure that you do not need any of the
contents of this folder any more.

So why would you want to delete a whole folder? Well maybe it was
an old application that you do not need anymore :-)

Starting
a
program

Starts the program with the given name and arbitrary arguments if
the program takes arguments. Firefox is just one example. Starting
Firefox without arguments just opens up Firefox. If you give it an
argument it opens the specified URL. When you type in this
starts interactive ruby.

Abort the
program

Press Ctrl + C - This will abort the program currently running in the terminal. For
instance this is used to shut down the Rails server. You can also
abort many other related tasks with it, including: bundle install, rake
db:migrate, git pull and many more!

/

cd directory cd my_app

cd my_app/app/controllers

ls directory

Windows: dir directory

ls

ls my_app

pwd pwd

mkdir name mkdir rails

mkdir fun

rm file

Windows: del file

rm foo

rm index.html

rm pictures/old_picture.jpg

rm -r folder

Windows: rd folder

rm -r stuff_i_dont_need

rm -r stuff_i_dont_need/

rm -r old_application

program arguments firefox

firefox railsgirlsberlin.de

irb irb

/Cheat Sheet Conventions
Bold words are what is really important e.g. the command and concept shown in the usage category. In the code usage and example columns these
highlight the main part of the concept, like this: . In the same columns mark the arguments/parameters of a
command/method.

However italic words in the descriptions or general text denote more general concepts or concepts explained elsewhere in this cheat sheet or in
general.

italic_words.conceptgeneral_stuff

ResourcesHelpEditor Tips Rails RubyConsole
Rails Beginner Cheat Sheet

Ruby

ResourcesEditor TipsRailsConsole Ruby

ResourcesHelpRailsConsole Ruby

Commands Rails

Rails

ResourcesHelpEditor TipsConsole Ruby

General Concepts Numbers Strings Arrays Ruby

HashesGeneral Concepts Numbers Strings Ruby

HashesArraysGeneral Concepts Numbers Ruby

Strings HashesArraysGeneral Concepts Ruby

Numbers Strings HashesArrays Ruby

ResourcesHelpEditor TipsRailsConsole

ResourcesHelpEditor TipsRailsRuby

Folder Structure

To top

To top

To top

To top

http://ruby-doc.org/
https://github.com/bbatsov/ruby-style-guide/
http://pragtob.github.io/rails-beginner-cheatsheet/resources.html
http://ruby-doc.org/core-2.0/Numeric.html
http://ruby-doc.org/core-2.0/String.html
http://ruby-doc.org/core-2.0/Array.html
http://www.ruby-doc.org/core-2.0/Hash.html
http://localhost:3000/
https://sublimetext.com/2
http://stackoverflow.com/questions/tagged/ruby-on-rails?sort=newest
http://pragtob.github.io/rails-beginner-cheatsheet/resources.html
http://pragtob.github.io/rails-beginner-cheatsheet/resources.html
http://pragtob.github.io/rails-beginner-cheatsheet/resources.html
http://pragtob.github.io/rails-beginner-cheatsheet/resources.html
http://pragtob.github.io/rails-beginner-cheatsheet/resources.html

	Cheat Sheet Conventions
	Console Basics
	Ruby Basics
	General concepts
	Numbers
	Strings
	Arrays
	Hashes

	Rails Basics
	Folder Structure
	Commands

	Editor tips
	Help

